

Instrukcja instalacji kontrolera

Copyright © 2013 by MicroMade

All rights reserved Wszelkie prawa zastrzeżone

64-920 PIŁA, ul. Wieniawskiego 16 Tel./fax: (67) 213.24.14 E-mail: mm@micromade.pl Internet: www.micromade.pl

Wszystkie nazwy i znaki towarowe użyte w niniejszej publikacji są własnością odpowiednich firm.

Spis treści

1. Ogólny opis urządzenia	4
2. Dane techniczne	4
3. Połączenie z komputerem	5
3.1 Połączenie za pomocą interfejsu bibi-F21	5
3.2 Połączenie za pomocą interfejsu bibi-F22	6
4. Czujnik sabotażowy	6
5. Sterowanie ryglem	7
6. Interfejsy do czytników	7
7. Podłączenie czytników	8
7.1 Podłączenie czytników bibinet	8
7.2 Podłączenie czytników Wieganda	8
7.3 Podłączenie czytników Track2	8
8. Konfigurowanie kontrolera z programu bibi	9
9. Przykład instalacji kontrolera	
9.1 Instalacja z interfejsem bibi-F21	11
9.2 Instalacja z interfejsem bibi-F22	

1. Ogólny opis urządzenia

Kontrolery systemu *Glinet* spełniają zarówno funkcje Kontroli Dostępu jak i Rejestracji Czasu Pracy. Konfiguracja kontrolerów ustawiana jest z komputera, z programu *Gli*. Po skonfigurowaniu kontrolery mogą pracować samodzielnie – niezależnie od komputera. Posiadają zegar czasu rzeczywistego oraz nieulotną pamięć typu Flash pozwalającą na zapamiętanie 10 tys kart i zarejestrowanie 32 tys zdarzeń. Przy pracy on-line wszystkie zarejestrowane zdarzenia są na bieżąco pobierane do komputera.

Kontroler **///ii-K12** obsługuje dwa niezależne przejścia, dla których można indywidualnie określić reguły dostępu. Z każdym przejściem są na stałe związane następujące elementy:

	Przejście 1	Przejście 2
Wyjście przekaźnikowe do sterowania rygla	OUT1	OUT2
Wyjście tranzystorowe (dodatkowy buzer)	OUT3	OUT4
Wejście – przycisk wyjścia	IN1	IN3
Wejście – czujnik otwarcia	IN2	IN4
Interfejs do czytników	R1-R2	R3-R4

Kontroler **(ili-K12** można też skonfigurować do obsługi jednego przejścia. W takim wypadku wszystkie interfejsy do czytników związane są z tym przejściem.

2. Dane techniczne

 Pamięć kart: 	10 000
 Pamięć zdarzeń: 	32 000
• Połączenie z komputerem:	RS485 (do 1km)
 Izolacja połączenia: 	2,5 kV RMS
 Prędkość transmisji: 	57600 Bodów
Podłączenie czytników:	4×RS232 lub 2×Wiegand lub 2×Track2 lub 2×Data/Clock
 Magistrala lokalna: 	RS485 (9600 Bodów)
 Wyjścia przekaźnikowe: 	2 – NO 24V/1A (NC 240V/0,6A)
Wyjścia tranzystorowe:	2 – OC 15V/1A
Impuls otwarcia rygla:	do 60s
 Przyciski wyjścia: 	styki NO lub NC
Czujniki otwarcia drzwi:	styki NO lub NC
 Dokładność zegara: 	± 10 s/miesiąc (20°C)

• 1	Vapięcie zasilania:	12,6V (pracuje od 11V do 14V)
• P	Pobór prądu:	100mA
• V	Wymiary:	130×130×35mm
• T	Semperatura pracy:	0°C +70°C

3. Połączenie z komputerem

W systemie **lilinet** do połączenia kontrolerów z komputerem wykorzystano łącze w standardzie RS485. Do jednej linii RS485 można podłączyć do 100 kontrolerów systemu **lilinet**. Linia ta jest łączona z portem RS232 komputera za pośrednictwem interfejsu **lili-F21** lub poprzez port Ethernet za pośrednictwem interfejsu **lili-F22**.

Kontrolery instalowane są w różnych, odległych od siebie, miejscach budynku. W związku z tym potencjały mas poszczególnych kontrolerów mogą być różne. W przypadku takich zdarzeń jak uderzenie pioruna w pobliżu budynku lub przepięcia wywołane awariami sieci energetycznej, różnica tych potencjałów może osiągać chwilowo duże wartości.

Dla uniknięcia przepływu przez łącze RS485 prądów wyrównawczych (wywołanych tymi różnicami) kontrolery i interfejsy zostały wyposażone w izolację galwaniczną wytrzymującą 2,5kV RMS.

3.1 Połączenie za pomocą interfejsu bibi-F21

Połączenie RS485 musi mieć postać jednej ciągłej linii (nie może się rozgałęziać) biegnącej przez wszystkie łączone kontrolery i interfejs **(ili-F21**. Maksymalna długość tego połączenia wynosi 1000 m. Dopuszczalne jest podłączanie poszczególnych urządzeń przez krótkie boczne odgałęzienia od linii głównej. Maksymalna długość takiego odgałęzienia to 10 m. Wykonanie połączenia z wykorzystaniem krótkich odgałęzień pozwala na łatwiejsze odłączenie (w razie potrzeby) któregoś z kontrolerów bez naruszania połączenia z pozostałymi.

Połączenie powinno być wykonywane za pomocą kabla UTP (powszechnie stosowanego do łączenia sieci komputerowych). Połączenie wykorzystuje dwie pary przewodów.

Każde z urządzeń łączonych do linii RS485 (kontrolery, interfejs) posiada trzy zaciski (oznaczone RSA, RSB i RSG) przeznaczone do wykonania tego połączenia. Połączenie należy wykonać w następujący sposób:

- · Jedna para skręconych przewodów:
 - przewód 1 łączy zaciski RSA wszystkich urządzeń
 - przewód 2 łączy zaciski RSG wszystkich urządzeń
- Druga para skręconych przewodów:
 - przewód 1 łączy zaciski RSB wszystkich urządzeń
 - przewód 2 łączy zaciski RSG wszystkich urządzeń

Zaciski RSG (izolowana masa połączenia RS485) są połączone dwoma przewodami (po jednym w każdej parze). Te dwa przewody powinny być dodatkowo połączone w jednym miejscu z masą ochronną budynku. Połączenie to najprościej jest wykonać przy jednym z kontrolerów. Połączenie izolowanej masy linii RS485 z masą ochronną zapobiega gromadzeniu się w linii RS485 ładunków elektrostatycznych. Ważne jest, aby to połączenie było wykonane tylko w jednym miejscu. Połączenie przewodów RSG do masy ochronnej budynku w kilku miejscach spowoduje przepływ prądów wyrównawczych przez te przewody niwecząc skuteczność zastosowanej w kontrolerach izolacji galwanicznej.

Dla uniknięcia odbić w linii RS485, musi ona być obciążona na końcach odpowiednimi rezystorami. Dlatego w urządzeniach znajdujących się na końcu linii muszą być założone zwory oznaczone "END" (koniec linii). W pozostałych urządzeniach zwory te muszą być zdjęte.

Interfejs **/i/i-F21** może być, tak jak każdy z kontrolerów, jednym z pośrednich urządzeń w linii. Pozwala to na poprowadzenie linii RS485 w dwie strony od komputera. Zdjęcie zwory "END" w interfejsie **/i/i-F21** wymaga otwarcia jego obudowy (fabrycznie zwora ta jest założona).

3.2 Połączenie za pomocą interfejsu bibi-F22

Interfejs **(ili-F22** pozwala włączyć magistralę RS485 z podwieszonymi kontrolerami do najbliższego gniazdka sieci LAN lub do routera internetowego. Dzięki temu upraszcza się wykonanie instalacji w obiektach wyposażonych w okablowanie strukturalne. W szczególności każdy kontroler może być wpięty w istniejącą siec LAN poprzez interfejs **(ili-F22**).

Magistrala RS485 musi mieć postać jednej ciągłej linii (nie może się rozgałęziać) biegnącej przez wszystkie łączone kontrolery (max.100) i interfejs **////-F22**. Maksymalna jej długość to 1000 m.

Połączenie powinno być wykonywane za pomocą kabla UTP (powszechnie stosowanego do łączenia sieci komputerowych). Połączenie wykorzystuje jedną parę przewodów.

Zaciski kontrolera oznaczone RSA i RSB łączy się z odpowiednimi zaciskami RSA i RSB interfejsu **lílí-F22.** Zwory END końca linii w kontrolerach powinny być zdjęte. W skrajnym (końcowym) kontrolerze na magistrali należy równolegle do zacisków RSA i RSB podłą-czyć rezystor 100 Ω , który jest dodatkowo dołączany do interfejsu **lílí-F22.** Drugi rezystor 100 Ω jest wpięty w drugą parę zacisków RSA i RSB interfejsu. Jeżeli interfejs jest w środku magistrali to należy zdjąć ten rezystor i wpiąć go równolegle do styków RSA – RSB drugiego skrajnego kontrolera.

4. Czujnik sabotażowy

Kontroler **////-K12** posiada wejście In5, do którego można podłączyć czujnik sabotażowy.

W typowej instalacji, gdzie kontroler będzie umieszczony razem z zasilaczem i akumulatorem w jednej metalowej obudowie, do tego wejścia należy podłączyć czujnik otwarcia tej

obudowy. Powinien on być włączony między wejście In5 i GND i pracować jako normalnie zwarty (NC).

5. Sterowanie ryglem

Kontroler **///iii-K12** posiada dwa wyjścia przekaźnikowe przeznaczone do sterowania rygli elektromagnetycznych (tryb NO, obciążalność 24V/1A) lub elektromagnesów blokujących drzwi (tryb NC, obciążalność 24V/0,6A). Wyjścia te są zabezpieczone przed zwarciem w obwodzie sterowanym jak i przed przepięciami powstającymi w momencie włączenia prądu.

Mimo to, w celu tłumienia zakłóceń bezpośrednio w miejscu ich powstawania, każda cewka rygla powinna być zbocznikowana diodą (np. 1N4007).

Ze względu na duży prąd sterowania rygli, ich obwody powinny być poprowadzone niezależnie od pozostałych połączeń kontrolera.

6. Interfejsy do czytników

Kontroler **(ili-K12** posiada 2 interfejsy R1-R2 i R3-R4 służące do podłączenia czytników. Każdy z nich może być niezależnie ustawiany do współpracy z różnymi czytnikami.

Poniższy opis będzie posługiwał się symbolami interfejsu R1-R2. Interfejs R3-R4 jest identyczny, a symbole tworzone są analogiczne (R3 zastępuje R1, natomiast R4 zastępuje R2).

Każdy interfejs posiada 2 linie wyjściowe: R1T i R2T (T-transmit) oraz dwie linie wejściowe: R1R i R2R (R-receive).

Obecnie, kontroler **///ii-K12** może współpracować z czytnikami o czterech różnych interfejsach:

• Standardowy interfejs czytników lilinet

Czytniki *lilinet* (np. *lili*-**R32**, *lili*-**R21**, *lili*-**R33**) posiadają dwuprzewodowe łącze RS232 - tak więc do każdego interfejsu można podłączyć 2 takie czytniki.

· Interfejs Wiegand

Po wybraniu tego ustawienia kontroler powinien prawidłowo współpracować z dowolnymi czytnikami z interfejsem Wiegand. Testowany był po podłączeniu czytników firmy HID, Idesco i z czytnikami biometrycznymi.

• Interfejs GP60RS

Ta odmiana interfejsu szeregowego umożliwia prawidłową współpracę z czytnikami dalekiego zasięgu GP60 i GP90 firmy Promag

• Interfejs Track2

Jest to interfejs przeznaczony do podłączenia czytników kart magnetycznych. Kontroler prawidłowo współpracuje tylko z kartami zapisanymi w standardzie SCM (SCM – system kontroli dostępu oparty o karty magnetyczne, produkowany dawniej przez firmę MicroMade).

7. Podłączenie czytników

7.1 Podłączenie czytników bibinet

	Funkcja w czytniku	Kolor przewodów (////-R32)
R1T	RxD	biały
R1R	TxD	zielony
R2T	RxD (drugi czytnik)	biały
R2R	TxD (drugi czytnik)	zielony

7.2 Podłączenie czytników Wieganda

	Funkcja w czytniku	Kolor przewodów (HID ProxPoint)
R1T	LED	pomarańczowy
R1R	Data 0	zielony
R2T	Buzer	żółty
R2R	Data 1	biały

Uwaga!

Kontrolery *lili*-K12 są wstępnie ustawione na współpracę ze standardowymi czytnikami *lilinet*. W takim wypadku linie wyjściowe (R1T i R2T) są ustawione w stanie stabilnym niskim. Przy podłączeniu czytników Wieganda spowoduje to włączenie na stałe buzera. Dlatego zaleca się dokonanie wstępnej konfiguracji kontrolerów i dopiero później podłączanie czytników.

7.3 Podłączenie czytników Track2

	Funkcja w czytniku	Kolor przewodów (MR Sensors 56T2B)
R1T	LED	pomarańczowy
R1R	Data	brązowy
R2T	Buzer	
R2R	Clock	żółty

8. Konfigurowanie kontrolera z programu *lili*

Konfigurację kontrolera należy ustawić z programu **lili**. Po otwarciu okienka: Opcje systemu **lili** należy w lewej części okna wskazać kontroler **lili-K12**, i w prawej części ustawić jego konfigurację.

🗊 Opcje systemu bibi		
Ustawienia systemu		
 MicroMade Port komunikacyjny (COM1) kontroler K12 - 3537 rzejście nr 01 czytnik R32 - 2813 czytnik R32 - 6196 przejście nr 02 czytnik R32 - 2814 czytnik R32 - 2814 czytnik R32 - 6195 	Zegar urządzenia Czas: 12:15:14 ÷ Data: 24 marca 2011 ▼ Wartość korekcji zegara (sekundy/tydzień): 0 ÷ Tryb pracy ✓ Blokowanie rejestracji po zapełnieniu pamięci Obsługa tylko jednego wyjścia w kontrolerze Wyjścia działające zależnie - funkcja śluzy Zewnętrzne sterowanie rodzajem rejestracji R1-R2: 2 x bibi2 Archiwum Wiegand GP60 RS SCM Track2 Novar D/C K11 Wiegand U Wiegand 10.03.2011 do 24.03.2011 GP60 RS SCM Track2 Novar D/C K11 Wiegand Zas pamiętania zdarzeń w trybie kontroli APB : 255	
OK Anuluj Zastosuj		

- Blokowanie rejestracji po zapełnieniu pamięci zaznaczenie tej flagi zabezpiecza przed utratą zarejestrowanych zdarzeń, jeżeli kontroler jest rzadko łączony z komputerem. Kontroler przestanie rejestrować kolejne zdarzenia, jeżeli cała pamięć będzie zapełniona rejestracjami nie zebranymi przez komputer. Jeżeli kontroler jest na stałe połączony z komputerem, ustawienie tej flagi nie ma znaczenia.
- **Obsługa tylko jednego wyjścia w kontrolerze** zaznaczenie tej flagi powoduje, że kontroler obsługuje tylko jedno przejście. Wszystkie czytniki są wtedy przełączone na to wyjście.
- Wyjścia działają zależnie funkcja śluzy zaznaczenie tej flagi powoduje, że kontroler realizuje funkcję śluzy. Otwarcie jednych drzwi może nastąpić tylko wtedy, jeżeli drugie drzwi są zamknięte.

 Interfejsy do czytników R1-R2 i R3-R4 – te pozycje pozwalają na wybranie odpowiednich interfejsów, w zależności od tego jakie czytniki będą podłączone do kontrolera.

Jeżeli wybierzemy interfejs bibi2, to po podłączeniu czytników *lilinet* zostaną one automatycznie zgłoszone do komputera i pojawią się na liście urządzeń.

Czytniki pracujące z innym interfejsem (Wiegand, Track2, Data/Clock) nie mogą same zgłaszać się do kontrolera. Dlatego też, po wybraniu określonego interfejsu, kontroler natychmiast zgłasza do programu obecność takich czytników, bez względu na to, czy są w rzeczywistości podłączone.

Czytniki z interfejsem Track2 zgłaszane są do programu jako czytniki R40, czytniki z interfejsem Wieganda jako R41, natomiast czytniki firmy Novar (Data/Clock) jako R42. Numer czytnika tworzony jest z numeru kontrolera oraz pozycji podłączenia czytnika.

Po wstępnej konfiguracji kontrolera przystępujemy do konfiguracji przejść (sterowanie rygla) i czytników podpiętych do kontrolera. Przy ich konfiguracji bardzo przydatne mogą okazać się wypełnione karty ewidencyjne interfejsów. Poprawnie wypełnione zawierają informacje o miejscu zamontowania kontrolerów i rozmieszczeniu podłączonych do nich czytników (wejście – wyjście).

💭 Opcje systemu bibi	
Ustawienia systemu	
 Wersja DEMO Port komunikacyjny (COM1) kontroler K12 - 20 kontroler K12 - 1486 kontroler K12 - 1487 kontroler K12 - 1489 kontroler K12 - 1489 kontroler K12 - 1480 przejście nr 01 czytnik R32 - 2505 przycisk/czujka czujnik otwarcia kontroler K12 - 1491 kontroler K12 - 1494 	Zegar urządzenia Czas : 22:12:11 ↔ Data : 4 marca 2008 ▼ Wartość korekcji zegara (sekundy/tydzień) : 0 ↔ Rodzaje rejestracji Obszar : RCP Kierunek : definiowany dla każdego czytnika Długość impulsu : 5 Maksimum otwarcia : 10 Wymaganie PIN kodu przy □ wejściu □ wyjściu ✓ Czujnik otwarcia norm. ⊂ zamknięty ● otwarty ✓ Przycisk / czujka norm. ⊂ zamknięty ● otwarty ✓ Dozwolone otwarcie drzwi klamką od wewnątrz ✓ Wyjście sterujące rygłem drzwi normalnie zamknięte
	Plan otwarcia drzwi : <standardowy> Obszar kontroli APB : cytaca_bistabilna"></standardowy>
bibi net	<t< td=""></t<>

9. Przykład instalacji kontrolera

9.1 Instalacja z interfejsem bibi-F21

9.2 INSTALACJA Z INTERFEJSEM BIBI-F22